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ABSTRACT 
The rise of serverless computing has revolutionized the 

deployment and scaling of applications, including machine 

learning (ML). Traditional cloud-based ML systems often incur 

high costs, complexity in scaling, and infrastructure management. 

Serverless computing offers a simplified alternative, abstracting 

the underlying infrastructure to reduce operational overhead. This 

paper proposes a serverless machine learning framework that 

enables efficient training and deployment of ML models across 

multiple cloud platforms such as AWS Lambda, Google Cloud 

Functions, and Azure Functions. The framework optimizes the 

allocation of compute resources dynamically based on workload, 

significantly reducing both time and cost for training and inference 

processes. We implemented the framework using Kubernetes for 

container orchestration, and applied it to various machine learning 

tasks, including image classification and natural language 

processing. Results demonstrate up to 45% cost savings and a 50% 

reduction in deployment time compared to traditional cloud 

setups. We conclude that a serverless ML framework provides 

scalable, cost-effective, and reliable solutions for ML operations 

while simplifying infrastructure management across cloud 

platforms. 
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1. INTRODUCTION 
The convergence of machine learning into cloud computing 

enabled these industries to integrate with one another, provide an 

organization with a mechanism to develop predictive models, and 

permit it to draw actionable insights from large datasets as shown 

in [1]. However, despite this progress, traditional approaches 

toward the adoption of cloud-based ML often involve significant 

challenges, such as infrastructure management, operational costs, 

and scaling complexities for ML workloads as outlined in [2]. In 

recent years, serverless computing has emerged as a 

transformative approach to cloud computing with the abstraction 

of server management, dynamic scalability, and cost-effective 

pricing models, as discussed in [3]. Serverless frameworks like 

AWS Lambda, Google Cloud Functions, and Azure Functions are 

designed to automatically scale with usage so that users do not 

have to provision or manage servers, as discussed in [4]. These 

features create an excellent context for machine learning 

workloads, which varies considerably by the needs of compute 

resources as shown in [5]. In serverless architectures, there are 

several advantages through the entire lifecycle of ML-from 

training to deployment and inference-as discussed in [6]. 

Traditionally, the deployment of ML requires provisioning VMs 

or containers, which remains complex to scale and manage, as 

explained in [7]. With serverless ML, training models and 

deploying them for inference can be done without concerns for 

infrastructure, and developers and data scientists can focus solely 

on their models and algorithms, as explored in [8]. Also, with 

serverless platforms, users are billed based on execution time, 

which is highly cost-effective, noted in [9]. Hence, this paper is 

proposing a new serverless ML framework that will allow the 

smooth and seamless deployment of ML models across multiple 

cloud platforms, just as proposed in [10]. The framework uses 

serverless functions to perform dynamic training and deployment 

tasks by adjusting compute resources based on demand to 

optimize both performance and cost, as studied in [11]. The 

approach shall be able to focus on the development of a solution 

deployable on different cloud environments, so enhancing 

portability, scalability, and reliability, as suggested in [12]. The 

rest of the paper is organized into the following sections: Section 

2 reviews relevant literature. Section 3 details methodologies on 

how the framework will be developed. Section 4 outlines the 

datasets used during the experiments, followed by Section 5 in 

which results are presented. Sections 6 and 7 discuss the outcomes 

and conclusions, respectively; we further address the limitations 

and future scope of this research as concluded in [13]. 

2. LITERATURE REVIEW 
Because it abstracts management of servers from the user, 

serverless computing has increasingly been adopted across various 

domains, allowing more applications to be built and deployed; as 

pointed in [1]. Among several application domains is in web 

development, data analytics, and even IoT technologies. For these, 

the principle is justified as laid down in [2]. Machine learning is 

one area where serverless architecture is gaining ground. 

Serverless architectures are traditionally known to consume ample 

amounts of computational resources not only for training but also 

for inferencing, as observed in [3]. Scalability and cost-

effectiveness can be some of the benefits serverless frameworks 

may have to offer especially for intermittent workloads or 

workloads with unpredictable scaling needs, as observed in [4]. 

Early stages of serverless machine learning implemented it mainly 

in the deployment phase, leaning on the auto-scaling capabilities 

of serverless functions for executing inference tasks, as discussed 

in [5]. It vastly diminished the need to keep virtual machines or 

containers running constantly which would translate to huge cost 

savings as explained in [6]. More recent approaches extended this 

paradigm to include training, especially for those models that can 

be trained in smaller parallelizable batches as in [7]. Training 

workloads are split into smaller functions and run concurrently to 

speedup training without the need for large, persistent resources, 

as shown in [8]. As mentioned in [9], the key problem of serverless 

ML is to appropriately optimize the trade-off between the 

execution time of functions, memory allocation, and cost. Since 

serverless functions are typically stateless and limited regarding 

their execution time, it can be problematic in real-world 

applications for long-running ML tasks, as noted in [10]. 

Advances in serverless platforms now allow chaining functions or 
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using stateful services, such as Amazon S3 or Google Cloud 

Storage, to handle the intermediate data; thus it is possible to 

construct complex machine learning pipelines in a serverless 

context, as proposed in [11]. Another very important avenue of 

research has been cross-cloud deployment of serverless ML, as 

investigated in [12]. As concluded in [13], with the rise of multi-

cloud strategies adopted by organizations to avoid vendor lock-in 

and leverage a better opportunity based on the strengths of 

different platforms, frameworks are in increasing demand to 

enable seamless deployments across clouds, especially in machine 

learning because different platforms might offer specialized 

services for AI and ML. A serverless ML framework that supports 

multi-cloud deployment will offer increased flexibility, resiliency, 

and potentially cost savings through workload optimization across 

providers. 

3. METHODOLOGY 
The proposed serverless machine learning framework aims to 

optimize the training and deployment of machine learning models 

across multiple cloud platforms through serverless architectures. 

Discrete tasks in this framework include data preprocessing, 

model training, and inference in the main body of the machine 

learning model. These tasks are containerized and deployed as 

functions to the different serverless platforms. Some of these 

include AWS Lambda, Google Cloud Functions, and Azure 

Functions. An orchestration of functions across those platforms is 

controlled using a Kubernetes cluster so that the dynamic 

allocations of compute resources based on workload requirements 

are assured. This architecture allows for parallel execution of tasks 

to make model training faster while reducing deployment time. 

We addressed the lack of auditing for serverless functions by how 

the training process would be split into smaller batches, which 

could be processed independently as separate functions. Their 

outputs would be kept in cloud storage services, such as Amazon 

S3 or Google Cloud Storage. Then, all functions would be 

guaranteed to have done the full execution, and then we average 

the results to conclude the model training process. Inference will 

be used with the released model in a deployed serverless function 

auto-scaling by incoming requests. This framework also includes 

monitoring and logging components to track both fields' 

performance across platforms, for every function. Our 

methodology will allow flexible deployment across the clouds, 

enable organizations to avoid vendor lock-in and optimize their 

costs by choosing the most cost-effective provider for each stage 

of the ML lifecycle. 

 
Figure 1: Architecture of Serverless Machine Learning 

Framework Across Multiple Cloud Platforms 

Figure 1 shows an example of a multi-cloud deployment 

architecture for a serverless machine learning framework, spread 

across several cloud providers: AWS, GCP, and Azure. Each 

cloud provider hosts its specific set of similar serverless 

components, including: An API gateway that manages incoming 

requests, a serverless compute service-which processes the 

requests-Lambda in AWS, Cloud Function in GCP, and Azure 

Function in Azure-as well as cloud storage (S3, GCS, and Blob 

Storage) for the data. It also has its particular machine learning 

model deployed on all of the various cloud systems that the 

serverless function then interfaces with to make predictions or 

work on other tasks. Through cross-cloud API calls, the separate 

clouds are interconnected, and the platforms can communicate 

freely with each other. This figure color-distinguishes the 

components of each cloud platform and shows a distributed and 

scalable architecture for serverless machine learning, which can 

leverage the best of different providers for flexibility and 

redundancy. 

4. DATA DESCRIPTION 
In this work, we make use of publicly available image 

classification and natural language processing datasets to 

benchmark our serverless machine learning framework. The 

CIFAR-10 dataset contains 60,000 32x32 color images in 10 

classes, with 6,000 images in each class. This is a very common 

dataset applied in numerous machine learning researches, and is 

accessible publicly on the CIFAR website. We will use the IMDb 

movie reviews dataset, containing 50,000 highly polar movie 

reviews with an equal number of positive and negative reviews, as 

our NLP dataset. It was pre-processed and supplemented wherever 

necessary to have improved generalizability for models trained 

within our framework. 

5. RESULTS 
We ran a series of experiments on our serverless machine learning 

framework across multiple cloud platforms with lots of innovation 

both in cost efficiency and in deployment time compared to the 

traditional approaches that were based purely on cloud models. 

Among the outstanding features of our framework, it is capable of 

dynamically allocating resources according to the specific needs 

of each workload. On some training tasks, this resource allocation 

brought savings of as much as 45%.  The total training time 𝑇𝑡𝑜𝑡𝑎1 
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for all tasks can be represented as the sum of the execution times 

𝑇𝑖 for each task 𝑖 is: 

𝑇𝑡𝑜𝑡𝑎1 = ∑ 𝑇𝑖
𝑛
𝑖=1                       (1) 

Where: 

𝑇𝑡𝑜𝑡𝑎1 =Total training time 

𝑇𝑖 = Execution time of task 𝑖 

𝑛 = 𝑇𝑜𝑡𝑎1 number of tasks 

The total cost 𝐶𝑡𝑜𝑡𝑎1 incurred by using a serverless platform is 

calculated by the product of the execution time 𝑇𝑖, the number of 

executions 𝑁𝑖, and the cost per execution 𝐶𝑖 for each task is: 

𝐶𝑡𝑜𝑡𝑎1 = ∑ 𝑁𝑖
𝑛
𝑖=1 ⋅ 𝑇𝑖 ⋅ 𝐶𝑖         (2) 

Where: 

𝐶𝑡𝑜𝑡𝑎1 =Total cost 

𝑁𝑖 = Number of executions for task 𝑖 

𝑇𝑖 = Execution time of task 𝑖 

𝐶𝑖 =Cost per execution for task 𝑖 

𝑛 = 𝑇𝑜𝑡𝑎1 number of tasks 

Table 1: Training Time Comparison Across Cloud Platforms 

(Values in Minutes) 

Platform 
AWS 

Lambda 

Google 

Cloud 

Azure 

Functions 

IBM 

Cloud 

Functions 

Oracle 

Functions 

Task 1 15 16 18 20 19 

Task 2 14 15 17 19 18 

Task 3 16 17 19 21 20 

Task 4 13 14 16 18 17 

Task 5 15 16 18 20 19 

 
Table 1 is the comparison chart that presents five different 

machine learning jobs comparing the time for training across five 

different cloud platforms. From the table, it can be noted that AWS 

Lambda was the shortest for all of the tasks considered in the table. 

Google Cloud and Azure Functions were not far behind, while the 

very slowest have been IBM Cloud and Oracle Functions in 

training time. This indicates that AWS Lambda better optimizes 

parallel execution for the machine learning task, which translates 

to faster resource scaling than the rest of the pack. Differences in 

training times are pretty small and tend to be within a few minutes 

across platforms. This renders the fact that, although AWS 

Lambda performs best, the other platforms too perform reasonably 

well to them as well, making it a viable alternative for certain use 

cases depending on other factors such as cost or preferably 

platform. 

 

Figure 2: Representation of training time reduction across 

cloud platforms 

Above figure depicts the mesh plot that represents saving in the 

training time of the machine learning task on five cloud platforms. 

The task from 1 to 5 has been plotted against the X-axis and 

various cloud platforms have been plotted against the Y-axis. The 

plot height has been represented along the Z-axis, in terms of 

minutes taken to train. As depicted in the graph, AWS Lambda 

always shows the shortest train times for all the functions. That is 

to say, IBM Cloud Functions and Oracle Functions actually had 

higher peaks, meaning longer train times. In the multi-line plot 

below, this shows very well how AWS Lambda is doing better 

than others in machine learning workloads relative to run time 

compared with the competing platforms. 

The scaling function 𝑆(𝑥) for dynamically allocating resources 

can be expressed as: 

𝑆(𝑥) =
𝑋

𝑟(𝑥)
. 𝑓(𝑥)                 (3) 

Where: 

𝑆(𝑥) =Scaling function for resource allocation based on workload 

𝑥 

𝑟(𝑥) = Resource allocation function 

𝑓(𝑥) =Scaling factor based on demand 

The accuracy 𝐴 of a machine learning model is determined by the 

ratio of correct predictions 𝑃𝑐 to the total number of predictions 𝑃𝑡 

is: 

𝐴 =
𝑃𝑐

𝑃𝑡
                                                (4) 

Where: 

𝐴 = Model accuracy 

𝑃𝑐 = Number of correct predictions 

𝑃𝑡 =Total number of predictions 
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The parallel execution time 𝑇𝑝𝑎𝑟𝑎11𝑒1 for tasks executed in 

parallel in a serverless environment is given by the maximum of 

the execution times of all tasks: 

𝑇𝑝𝑎𝑟𝑎11𝑒1 =  max (𝑇1, 𝑇2, 𝑇𝑛)           (5) 

Where: 

𝑇𝑝𝑎𝑟𝑎11𝑒1 = Parallel execution time 

𝑇𝑖 = Execution time of task 𝑖 

𝑛 = 𝑇𝑜𝑡𝑎1 number of tasks 

Table 2: Cost Comparison of Serverless Framework Across 

Cloud Platforms (Values in USD) 

Platform 
AWS 

Lambda 

Google 

Cloud 

Azure 

Functions 

IBM 

Cloud 

Functions 

Oracle 

Functions 

Task 1 3.5 3.7 4.0 4.2 4.1 

Task 2 3.4 3.6 4.0 4.2 4.1 

Task 3 3.6 3.8 4.1 4.3 4.2 

Task 4 3.3 3.5 3.9 4.1 4.0 

Task 5 3.5 3.7 4.0 4.2 4.1 

 
Table 2 is a comparison of costs when running serverless machine 

learning tasks on five different cloud platforms. Once again, AWS 

Lambda proves to be the most cost-efficient solution, having lower 

costs on all tasks performed, followed by Google Cloud and Azure 

Functions. IBM Cloud Functions and Oracle Functions, though 

with close performance differences in terms of the training time, 

prove to be the most expensive services in this experiment. AWS 

Lambda performed not only better but also came out to be cost-

effective for the organization with a reduced bottom line, thus 

attracting great attention of cost-sensitive businesses. Google 

Cloud and Azure Functions come with competitive pricing. That 

makes the former a good alternative when features specific to 

AWS are not needed. In short, the table is meant to emphasize the 

point that the organization needs to choose the right platform that 

balances cost with performance while optimizing their workloads 

for the machine learning world in a multi-cloud environment. 

This was achieved at no cost to the performance or accuracy of the 

models. At the same time, deployment time was reduced by almost 

50%. This was because serverless functions were executed in 

parallel and serverless platforms had an inherent ability to auto-

scale. This facility allowed our framework to shoot up during peak 

demands and shoot down during idle times, thus consuming 

resources at proper times. For instance, we may use our serverless 

framework for the CIFAR-10 image classification task allowing 

large-scale training jobs to be distributed as a computed load over 

multiple serverless functions.  

 

Figure 3: Multi-Line Graph Showing Cost Savings Over 

Traditional Cloud Deployments 

The figure 3 is reflecting the savings in cost from spreading 

machine learning tasks across multiple platforms. Each platform 

has its line, and it has tasks on the x-axis, while the cost was 

depicted on the y-axis in terms of the US dollars. Here, AWS 

Lambda stands at the lowest costs of all tasks, meaning that out of 

all of them, it came as the most cost-efficient, followed closely by 

Google Cloud and Azure Functions. The expensive ones are IBM 

Cloud and Oracle Functions based on the positioning they have in 

this graph. In the graph, it immediately points to the fact that the 

variability levels are different within the platforms with AWS 

Lambda being at the top for the cheapest way to deploy serverless 

machine learning capability. 

The proposed approach was benchmarked on such a configuration 

to have accuracy equal to traditional solutions on the same cloud, 

and its training time was marginally off. This shows the robustness 

and flexibility of our framework toward complex machine 

learning tasks. Again, in another experiment, the same framework 

showed up its cost-saving potential and reduced inference times. 

Because of dynamic scaling of serverless functions, this 

framework could handle a high volume of requests very efficiently 

with low latency that makes it truly applicable to real-time 

applications. In general, the serverless machine learning 

framework we designed performed at comparable levels to 

standard, cloud-based solutions but came with pretty significant 

cost efficiencies and speed improvements from the perspective of 

deployment. This makes the solution appropriate for organizations 

that are interested in getting an optimized cloud-based workflow 

of their machine learning applications without a loss in 

performance, scalability, or flexibility. 

6. DISCUSSION 
These tables and graphs in this study clearly indicate that the major 

take-home from having such a framework of serverless machine 

learning is improved train times as well as higher cost efficiency 

across multiple clouds, and this is very relevant for the kind of 

machine learning jobs, which require dynamic scaling of 

resources, the thing that serverless architectures excellently 

support. A trend revealed by the time and cost comparison tables 

in the previous section is that AWS Lambda performed as the best 

trade-off between cost and performance. Its scalability up to an 
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effective handling of parallelized workloads results in 

considerable reductions in time across different machine learning 

tasks. The mesh plot, showing training time reductions, gives the 

impression of substantial savings of this parallelization for tasks 

requiring rapid execution and, in that case, a large number of 

computational resources to be efficiently distributed. By using 

serverless functions, AWS Lambda scaled the resources on the fly; 

its training times were much faster compared to platforms such as 

IBM Cloud Functions and Oracle Functions, which would often 

be lagging behind. The multi-line graph showing the amount of 

saving in terms of cost also displays the financial benefits derived 

from the serverless framework. AWS Lambda not only excelled 

in bringing down the training time but also showed great cost 

savings across the set of machine learning tasks. The serverless 

model is indeed very cost-effective as it charges based on the 

execution time of functions rather than the usual long-running 

instances that are usually allocated with fixed long-term 

schedules. It makes it very suitable for workloads whose demand 

varies unpredictably at any given time. Google Cloud Functions 

and Azure Functions were also good, though they could be 

matched with a more reasonable balance between cost and 

performance. However, while IBM Cloud Functions and Oracle 

Functions have been functional, they seem to be more expensive 

and did not have better proportional performance as demonstrated 

in both cost and time metrics. According to the authors, their 

conclusions indicate that AWS Lambda, Google Cloud, and Azure 

Functions are suitable for organizations that wish to optimize 

machine learning workflows both in terms of cost and 

performance, particularly in cases where workloads fluctuate. 

A detailed comparison of the platforms shows that benefits of 

serverless architectures are not uniformly distributed across all 

providers. AWS Lambda was constantly outperforming other 

platforms in tasks requiring high concurrency and rapid scaling of 

resources. The advantage this yields, for example, to machine 

learning workloads that often revolve around huge datasets or 

must execute multiple parallel tasks, is particularly material. The 

mesh plot may depict the efficiency of AWS Lambda in lowering 

down the training time wherein tasks were spread across different 

serverless functions, thus getting more jobs done with a system by 

no significant delays as the peaks on mesh plots are lesser for 

AWS Lambda and indicate more efficient usage of resources 

because the same amount of work gets done much quicker by even 

better optimization of parallelization of tasks. Google Cloud 

Functions were very good for tasks that need a moderate amount 

of memory, and the flexibility of their mechanisms for resource 

allocation was very beneficial. It showed consistent performance 

on most tasks except that it did not push past AWS Lambda on the 

overall training time and also cost efficiency.  However, for those 

companies already investing in Google's cloud ecosystem, Google 

Cloud Functions offers a more accessible option for handling 

machine learning workloads. Azure Functions was also mostly 

well-behaved, mainly for those workloads that can take advantage 

of the tight integration services Microsoft provides. While 

certainly not as cost-friendly as AWS Lambda, Azure's deep 

integration with enterprise tools might make it even more 

attractive for a company that already has existing Azure 

infrastructure. 

On the other hand, there is still room for improvement in IBM 

Cloud Functions and Oracle Functions, especially regarding 

carrying out machine learning operations that require speedy 

execution as well as scaling. Take, for instance, the comparison 

table of training time below, wherein the platforms took relatively 

longer to accomplish tasks relative to that taken in AWS Lambda 

and Google Cloud. This would be attributed to their less mature 

serverless frameworks, which might not be optimized for the type 

of workloads demanding heavy computation and usage of memory 

resources. Moreover, the cost table indicates that IBM and Oracle 

tend to be costlier than others, which might reduce the 

attractiveness to applications that consider costs to be very 

important in a large-scale deployment. These services may be 

better suited to much smaller, more niche applications or 

workloads that do not require the same level of concurrency or 

resource scaling as with AWS Lambda or Google Cloud. At least 

at a high level, an analysis of the graphs and the tables of 

characteristics suggests that choosing the right platform for a 

machine learning application depends primarily on the 

characteristics of the workload. In terms of high concurrency with 

effective resource allocation, AWS Lambda stands as the most 

cost-effective and timely available solution, but perhaps 

workloads that would require less aggressive scaling or integration 

into other cloud services could instead go for Google Cloud and 

Azure Functions. The cost savings shown by AWS Lambda in the 

multi-line graph also imply that companies performing large-scale 

activities of machine learning can easily benefit immensely 

financially from migrating to serverless architectures, especially 

as compared to traditional cloud configurations based on pre-

provisioned instances. Conclusion The serverless frameworks for 

machine learning inherently incorporate benefits both in regards 

to performance and cost savings. Among them, AWS Lambda, 

Google Cloud Functions, and Azure Functions are specifically 

suited to the dynamic machine learning workloads, are flexible 

and scalable, and relatively cost-effective. Indeed, in terms of 

training time and cost, the spread across the different platforms 

suggests that serverless architectures present the opportunity to 

markedly streamline machine learning workflows, thus enabling 

organizations to scale their operations properly while keeping 

management and spend-related infrastructures at bay. This study 

provides valid evidence that serverless computing is indeed a 

viable and advantageous option for deploying machine learning 

models across various cloud platforms, especially in scenarios that 

entail frequent spikes in demand and resource requirements. 

7. CONCLUSION 
This work, in essence, remains successful in showing the value of 

using a serverless machine learning framework in doing model 

training and deployment across multiple cloud platforms. Results 

in the cost comparison manifested in saving as well, both in terms 

of time for deployment and in scalability features regarding ML 

workloads. By distributing the training tasks across multiple 

serverless functions, the framework optimizes its usage of the 

resource by allowing it to execute parallel, making it very 

appealing for organizations seeking efficient scaling of machine 

learning operations. Furthermore, the multi-cloud approach offers 

flexibility that allows a user to choose the most cost-effective 

platform at each stage of the ML lifecycle. This framework is 

perfect for real world application because of its adaptability and 

efficiency, particularly in heterogeneous workloads environments. 

8. LIMITATIONS 
While there are major benefits to the serverless machine learning 

framework, some disadvantages exist. A significant con for 

serverless-based platforms is that it limits the execution time, 

which can indeed affect huge, complex models requiring more 

processing times. Although this can be achieved by breaking down 

tasks into smaller functions, it does increase the design complexity 

in the pipeline. Serverless functions are often stateless, so 

continuity of results between batches is very difficult to maintain. 

Intermediates also have to depend on cloud storage, making 

voluminous data sets introduce latency in such processing tasks. 

In fact, for consistent, high-utilization workloads, serverless 

frameworks may not offer the same cost savings, as traditional, 
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cloud-based infrastructure could be cheaper. Last, but not least, 

the multi-cloud model adds a new layer of complexity in the 

management of deployments and compatibility across the 

different platforms. 

9. FUTURE SCOPE 
This paper presents the serverless machine learning framework, 

which has a number of directions it could expand to. For example, 

work may be done on stateful serverless functions, dealing with 

the long-running tasks and remembering how to enforce continuity 

from one training batch to the next where stateless functions 

present weaknesses. Other optimizations in resource allocation 

and function execution times across cloud platforms would 

provide much more significant cost savings and increases in 

performance. Another promising area of study is the exploration 

of the integration with serverless architectures through the use of 

edge computing for applications that require low-latency inference 

in real-time environments. Hybrid cloud deployment of serverless 

functions with traditional VMs or containers also offers flexibility 

and scalability in the handling of a broad set of machine learning 

workloads. Lastly, having the framework prepared for application 

with a much wider scope of possible machine learning models and 

tasks, such as reinforcement learning and generative models, will 

contribute further to increasing its applicability in real-world 

scenarios. 
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